Problem Set 2 – Fundamental of Economics, Data Science for Management, University of Catania.

Prof. Francesco Drago

(Problem sets should be submitted individually – one for each student – in class on Monday, October 14. Please show not only the solutions but also the relevant steps to obtain the results. Thanks and have fun!)

- 1. Consider the exponential utility function $U = -\exp^{(-\rho c)}$, where c is consumption and $\rho > 0$. Show that it is increasing $(u'_c > 0)$ and concave $(u_c'' < 0)$ for all c as long as $\rho > 0$, that is, as long as the agent is risk-averse. Show that it has constant absolute risk aversion.
- 2. Consider the power utility function $U = [1/(1-\rho)] c^{(1-\rho)}$ with $\rho \neq 1$. Show that it is increasing $(u'_c > 0)$ and concave $(u_c'' < 0)$ for all c > 0. Show that it has constant relative risk aversion given by ρ .
- 3. Consider log utility function $U = \log c$. Show that it is increasing $(u'_c > 0)$ and concave $(u_c'' < 0)$ for all c>0. Show that it has constant relative risk aversion given equal to 1.
- 4. Assume three different individuals with income equal to 30, 20 and 10, respectively. Assume that each of these workers have an utility function $u=c^{2/3}$ $l^{1/3}$, where c is consumption and l is leisure and that the price of consumption is equal to 1. Given the constraint h=24-l, find the Marshallian demand of consumption, the demand of leisure and the supply of labor. For each of the three workers find the reservation wage.
- 5. Consider an economic agent that has to invest his wealth w in stocks and in bonds. In particular he has to decide the fraction α of his wealth w to be invested in stocks and the remaining fraction $1-\alpha$ in bonds. For each euro invested bonds give (1+r), with r>0. For each euro invested, stocks give $(1+r_-)$, with $r_->0$ with probability p and $(1+r_+)$, with $r_+>0$, with probability p.

Write down the maximization problem of this agent assuming a utility function u(w) which is increasing and concave. Precisely, write down the expected utility as a function of α (endogenous variable), p and r, r_+ and r_- (exogenous variables) that should be maximized with respect to α subject to the constraint that $\alpha \in [0,1]$.

Find the first order condition (the derivate of the utility function with respect to α equal to zero).

Verify that the second derivate is always negative (the first derivative of the first order condition).

Use the implicit function theorem to understand how α in the optimum varies with respec to w (this is quite difficult).